Extremal Betti Numbers of Vietoris–Rips Complexes
نویسندگان
چکیده
منابع مشابه
Extremal Betti Numbers of Rips Complexes
Upper bounds on the topological Betti numbers of Vietoris-Rips complexes are established, and examples of such complexes with high Betti
متن کاملOn the Betti Numbers of Chessboard Complexes
In this paper we study the Betti numbers of a type of simplicial complex known as a chessboard complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allows us to determine which is the first nonvanishing Betti number (aside from the 0-th Betti number). We can therefore settle certain cases of a conjecture of Björner, Lovász, Vrećica, and Z̆ival...
متن کاملPersistent Betti numbers of random Čech complexes
We study the persistent homology of random Čech complexes. Generalizing a method of Penrose for studying random geometric graphs, we first describe an appropriate theoretical framework in which we can state and address our main questions. Then we define the kth persistent Betti number of a random Čech complex and determine its asymptotic order in the subcritical regime. This extends a result of...
متن کاملExtremal Betti numbers of graded modules 1 Marilena Crupi
Let S be a polynomial ring in n variables over a field K of characteristic 0. A numerical characterization of all possible extremal Betti numbers of any graded submodule of a finitely generated graded free S-module is given. 2010 Mathematics Subject Classification: 13B25, 13D02, 16W50.
متن کاملExtremal Betti Numbers of Some Classes of Binomial Edge Ideals
Let G be a simple graph on the vertex set [n] with edge set E(G) and let S be the polynomial ring K[x1, . . . , xn, y1, . . . , yn] in 2n variables endowed with the lexicographic order induced by x1 > · · · > xn > y1 > · · · > yn. The binomial edge ideal JG ⊂ S associated with G is generated by all the binomials fij = xiyj−xjyi with {i, j} ∈ E(G). The binomial edge ideals were introduced in [5]...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2010
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-010-9274-z